COT 6405 Introduction to Theory of
Algorithms

Topic 2. Algorithm Analysis

8/28/2016

Growth rate analysis

* A further abstraction that we use in algorithm
analysis is to characterize in terms of growth

classes.
— Matrix multiplication time grows as n?
— Linear search time grows as n

— Insertion sort time grows as n*

Why is growth rate important?

* Actual execution time assuming 1,000,000
basic operations per second.

Input n nlgn = n? n> 2m
size
10 0.00001 3.62e-5 0.0001sec 0.001sec <0.01sec
sec sec
100 0.0001 sec 6.52e-4 0.01 sec 1 min ~oo centuries
sec
1000 0.001sec 0.00978 1 sec 17.64 min ~oo centuries

sec
104 0.01 sec 0.132sec 1.692 min | 11.76 days | ~oo centuries

Growth “classes” of functions

* O(g(n)) big oh: upper bound on the growth
rate of a function;

— That is, a function belongs to class O(g(n)) if g(n) is
an upper bound on its growth rate

* ()(g(n)) big omega: lower bound on the
growth rate of a function

* 0 (g(n)) big theta: exact bound on the growth
rate of a function

8/28/2016 4

Determining the growth class

* A function may belong to multiple growth
classes

— For example a function describing the (worst case)

number of basic operations of an algorithm might
be O(n?) and Q(n Ig n)

— If we find example inputs for which the growth
rate is n?, then we can also say O (n?)

— |If we’re able to prove that it never grows faster
than nlg n, we can say that it’s O (nlgn)

Little oh and little omega

* o(g(n)) little oh: used to denote functions that
grow more slowly than g(n);

— For example, 3n + o(n) indicate that it’s O(n) with
a small leading constant

* w(g(n)) little omega: denotes functions that
grow faster than g(n);

— Rarely used but included for completeness

Precise definitions of big oh and big
omega

* f(n) € O(g(n)) iff there exist c >0 and ny>0
such that f(n) < cg(n) forall n = n,

* f(n) € Q(g(n)) iff there existc>0andny >0
such that f(n) = cg(n) for all n = n,

* O (g(n) € O(g(n)) N Qg(n))

cg(n)
| f(n)
fn)
cg(n)
: , 5 .
f(n O(g(n)) f(n) Q(g(n))
(b) (c)

Figure 3.1 Graphic examples of the ©, 0, and © notations. In each part, the value of np shown is
the minimum possible value; any greater value would also work. (a) ©-notation bounds a function to
within constant factors. We write f(n) = ©@(g(n)) if there exist positive constants g, ¢, and 7 such
that to the right of n, the value of f(n) always lies between ¢y g(n) and ¢52(n) inclusive. (b) O-
notation gives an upper bound for a function to within a constant factor, We write fn) = 0(g(n))
if there are positive constants g and ¢ such that to the right of ng, the value of f(n) always lies on
or below cg(n). (c) Q-notation gives a lower bound for a function to within a constant factor. We
write f(n) = Q(g(n)) if there are positive constants ng and ¢ such that to the right of ng, the value
of f(n) always lies on or above cg(n).

Exercises

* How do we define that a function f(n) has an
upper bound g(n), i.e., f(n)isin O(g(n)) ?

* How do we define that a function f(n) has an
lower bound g(n), i.e., f(n) isin Q(g(n)) ?

 How do we define that a function f(n) has an
tight bound g(n), i.e., f(n) isin ®(g(n)) ?

An example of big oh and big
omega

* How to prove n? + 2n +lg n € O(n?3) ?

n* +2n +lgn € O(n?)

Proof. n*+4+2n+lgn < n*+2n+n aslongasn >1
= n?+3n
< n’+3n? (if n > 1)
= 4n?

This satisfies the definition of O(n?) with ¢ = 4 and ny = 1.

Exercises (cont’d)

* Ex1: Prove n3- 10n? ¢ O(n?)
* Ex2: Prove 5n° - 3n%+2n-6 € O (n)

Exercises (cont’d)

n? —10n* ¢ O(n?)
Proof. Otherwise there must exist ¢ > 0 and ng > 0 with n® — 1002 < en® for all n > ny.

But then n® < (c+10)n? (for all n > ng) and n < ¢+ 10. The latter is impossible for a
ewven ¢ and all n > ng.

8/28/2016 12

Exercises (cont’d)

5n® — 3n? + 2n — 6 € O(n?)
Proof.
First show that it’s in O(n?):

5n° —3n24+2n—6 < 5n°+2n
< n? when n > 1
so it’s O(n?) with ¢ = 7 and ng = 1.
Then that it’s in Q(n?):
5n3 —3n?24+2n—6 > 5n? —3n? —6
> %’:‘13 when %ng >3n’+6orn > 2

(good enough)

8/28/2016 13

Exercises (logarithms and exponents)

* Ex3:1Inn € B(lg n)
* Ex4:e™ ¢ 0(n') for any fixed t
« Ex5:e™ ¢ O(et) for any fixed t

Exercises (cont’d)

Inn € O(lgn)

Proof. Recall that Inn = log,_ n and lgn = log, n. Using one of the mathematical identities on the
first page, we have

1

Iz e

So clgn < Inn < clgn, where ¢ = , for all n > 1, which proves both O(lgn) and Q(Ign).

8/28/2016 15

Exercises (cont’d)

« e™ ¢ 0(n') for any fixed t
« e™ ¢ O(et) for any fixed t

Exercises (cont’d)

« e™ ¢ 0(n') for any fixed t

Proof: otherwise there exist ¢ > 0 and ny> 0 with
e <cntforalln>n,.
But then (taking natural log’s of both sides) n < Inc + t Inn.

Inc

This translates into (divide each side by Inn) — < o + t.
l
Whenn = e, < it<Inc+t (a constant). On the other
Inn Inn
hand,
n 1
lim — = lim — = o

nowinn nowl/n

Exercises (cont’d)
e e™ ¢ O(et) for any fixed t

Proof: Otherwise there exist ¢ > 0 and ny> 0 with
e™ < cet forall n > n,.
But then (taking natural log’s of both sides) n < Inc + t.

c is a constant, and thus Inc + t is a fixed value. It is impossible to
find an ng > 0 so that for all n = ng, nis less than or equal to a
fixed value.

Little oh and little omega

* f(n) € o(g(n)) iff for all ¢ > 0 there exists ny>0
such that 0 < f(n) < cg(n) foralln = ny

* f(n) € w(g(n)) iff for all c > 0 there exists ny >0
such that 0 < cg(n) < f(n) for all n = n,

An example of little oh and little
omega
e« 2" € 0(3")
* Proof: lim (2/3)™ = 0 and by definition of

n—00

limit, for any ¢ > 0, there is an ny > 0 with
(2/3)" <cforalln = ngy. This means that
2"<c3™" for alln = ny, as desired.

Limits and notation

* Limits can be helpful in determining the
growth rate of functions

—lim £ =g implies f(n) € o(g(n)), that
n—oo g(n)

is, f(n) € Q(g(n))

f(n; = oo implies f(n) € w(g(n)), that

is, f(n) € 0(g(n))
— lim £& - =d > 0 implies f(n) € 0O(g(n))

n—-o g(n)

Limits and notation (cont’d)

* Warning: the converses are not necessarily
true. Limits may not exist in some cases where
growth classes are well-defined.

